Comparison of physiological motion filters for in vivo cardiac ARFI.
نویسندگان
چکیده
Acoustic radiation force impulse (ARFI) imaging is being utilized to investigate mechanical properties ofcardiac tissue. The underlying physiological motion, however, presents a major challenge. This paper aims to investigate the effectiveness of various physiological motion filters using in vivo canine data with a simulated ARFI push pulse. Ideally, the motion filter will exactly model the physiological motion and, when subtracted from the total displacement, leave only the simulated ARFI displacement profile. We investigated three temporal quadratic motion filters: (1)interpolation, (2) extrapolation and (3) a weighted technique. Additionally, the various motion filters were compared when using 1-D versus 2-D autocorrelation methods to estimate motion. It was found that 2D-autocorrelation always produced better physiological motion estimates regardless of the type of filter used. The extrapolation filter gives the most accurate estimate of the physiological motion at times immediately after the ARFI push (0.1 ms) while a close-time interpolation filter using displacement estimates at times before full tissue recovery gives the most accurate estimates at later times after the ARFI push (0.7 ms). While improvements to the motion filter during atrial systole and the onset of ventricular systole are needed, the weighted, close-time interpolation and extrapolation motion filters all offer promising results for estimating cardiac physiological motion more accurately, while allowing faster ARFI frame rates than previous motion filters. This study demonstrates the ability to eliminate physiological motion in a clinically-feasible manner, opening the door for more extensive clinical experimentation.
منابع مشابه
Acoustic radiation force impulse imaging of mechanical stiffness propagation in myocardial tissue.
Acoustic radiation force impulse (ARFI) imaging has been shown to be capable of imaging local myocardial stiffness changes throughout the cardiac cycle. Expanding on these results, the authors present experiments using cardiac ARFI imaging to visualize and quantify the propagation of mechanical stiffness during ventricular systole. In vivo ARFI images of the left ventricular free wall of two ex...
متن کاملIntracardiac acoustic radiation force impulse imaging: a novel imaging method for intraprocedural evaluation of radiofrequency ablation lesions.
BACKGROUND Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging techni...
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملIn vivo feasibility case study for evaluating abdominal aortic aneurysm tissue properties and rupture potential using acoustic radiation force impulse imaging.
An abdominal aortic aneurysm (AAA) is defined as a permanent and irreversible localized dilatation of the abdominal aorta. A reliable, non-invasive method to assess the wall mechanics of an aneurysm may provide additional information regarding their susceptibility to rupture. Acoustic radiation force impulse (ARFI) imaging is a phenomenon associated with the propagation of acoustic waves in att...
متن کاملRespiratory-Gated MRgHIFU in Upper Abdomen Using an MR-Compatible In-Bore Digital Camera
OBJECTIVE To demonstrate the technical feasibility and the potential interest of using a digital optical camera inside the MR magnet bore for monitoring the breathing cycle and subsequently gating the PRFS MR thermometry, MR-ARFI measurement, and MRgHIFU sonication in the upper abdomen. MATERIALS AND METHODS A digital camera was reengineered to remove its magnetic parts and was further equipp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonic imaging
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2011